Characterization of SiC-grown epitaxial graphene microislands using tip-enhanced Raman spectroscopy.

نویسندگان

  • Sanpon Vantasin
  • Yoshito Tanaka
  • Shohei Uemura
  • Toshiaki Suzuki
  • Yasunori Kutsuma
  • Daichi Doujima
  • Tadaaki Kaneko
  • Yukihiro Ozaki
چکیده

Single-layer graphene microislands with smooth edges and no visible grain boundary were epitaxially grown on the C-face of 4H-SiC and then characterized at the nanoscale using tip-enhanced Raman spectroscopy (TERS). Although these graphene islands appear highly homogeneous in micro-Raman imaging, TERS reveals the nanoscale strain variation caused by ridge nanostructures. A G' band position shift up to 9 cm(-1) and a band broadening up to 30 cm(-1) are found in TERS spectra obtained from nanoridges, which is explained by the compressive strain relaxation mechanism. The small size and refined nature of the graphene islands help in minimizing the inhomogeneity caused by macroscale factors, and allow a comparative discussion of proposed mechanisms of nanoridge formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Micro-Raman analysis of the influence of hydrogen intercalation on the epitaxial graphene grown on 4H-SiC(0001) substrate K.Grodecki

It is commonly accepted that properties of epitaxial graphene (EG) grown on SiC are determined by interaction with substrate. It was found, that hydrogen intercalation of EG grown on SiC(0001) substrates by sublimation is a promising method to increase the mobility of carriers [1]. As verified by Raman spectroscopy [2] sublimation grown samples show much stronger interaction with the SiC substr...

متن کامل

Multidimensional characterization, Landau levels and Density of States in epitaxial graphene grown on SiC substrates

Using high-temperature annealing conditions with a graphite cap covering the C-face of, both, on axis and 8° off-axis 4H-SiC samples, large and homogeneous single epitaxial graphene layers have been grown. Raman spectroscopy shows evidence of the almost free-standing character of these monolayer graphene sheets, which was confirmed by magneto-transport measurements. On the best samples, we find...

متن کامل

Micro-Raman and micro-transmission imaging of epitaxial graphene grown on the Si and C faces of 6H-SiC

Micro-Raman and micro-transmission imaging experiments have been done on epitaxial graphene grown on the C- and Si-faces of on-axis 6H-SiC substrates. On the C-face it is shown that the SiC sublimation process results in the growth of long and isolated graphene ribbons (up to 600 μm) that are strain-relaxed and lightly p-type doped. In this case, combining the results of micro-Raman spectroscop...

متن کامل

The effect of doping Graphene Quantum Dots with K, B, N, and Cl on its emitted spectrum

In this work, the effect of doping Graphene Quantum Dots (GQDs) on their emission spectra has been studied. First, graphene has been deposited on SiC substrate by using sublimation method. Second, doped-GQDs have been distributed on the surface of graphene via drop casting. The structure of the samples have been studied and characterized by X-ray diffraction (XRD), Scanning Electron Microscopy ...

متن کامل

Effect of Growth Pressure on Epitaxial Graphene Grown on 4H-SiC Substrates by Using Ethene Chemical Vapor Deposition

The Si(0001) face and C(000-1) face dependences on growth pressure of epitaxial graphene (EG) grown on 4H-SiC substrates by ethene chemical vapor deposition (CVD) was studied using atomic force microscopy (AFM) and micro-Raman spectroscopy (μ-Raman). AFM revealed that EGs on Si-faced substrates had clear stepped morphologies due to surface step bunching. However, This EG formation did not occur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 43  شماره 

صفحات  -

تاریخ انتشار 2015